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Abstract 

An analytical nonlinear stress-strain model and a microscopic damage index for confined and unconfined concretes 
together with a macroscopic damage index for reinforced concrete (RC) structures under cyclic loading are proposed. In 
order to eliminate the problem of scale effect, an adjustable finite element computer program was generated to simulate RC 
structures subjected to cyclic loading. By comparing the simulated and experimental results of tests on the full-scale structural 
members and concrete cylindrical samples, the proposed stress-strain model for confined and unconfined concretes under 
cyclic loading was accordingly modified and then validated.  The proposed model has a strong mathematical structure and can 
readily be adapted to achieve a higher degree of precision by modifying the relevant coefficients based on more precise tests. 

To apply the proposed damage indices at the microscopic and macroscopic levels, respectively, stress-strain data of finite 
elements (confined and unconfined concrete elements) and moment-curvature data of critical section are employed, 
respectively. The proposed microscopic damage index can easily be calculated by using the proposed simple analytic 
nonlinear stress-strain model for confined and unconfined concretes. The proposed macroscopic damage index is based on the 
evaluation of nonlinear local degradation of materials and taking into account the pseudo-plastic hinge produced in the 
critical section of the structural element. One of the advantages of the proposed macroscopic damage index is that the 
moment-curvature data of the critical section is sufficient in itself and there is no need to obtain the force-displacement data of 
the structural member. 

Keywords: Stress-strain model, Confined and unconfined concretes, Damage index, Cyclic loading, Numerical simulation, 
Reinforced concrete structures. 

1. Introduction 

Confined concrete can sustain much higher strains 
without strength degradation compared to unconfined 
concrete. This enhanced performance can be achieved only 
when the unconfined cover concrete has failed and spalled. 
Among several models have been proposed to determine 
the law governing the behavior of confined compressive 
concrete confined within rectangular or spiral stirrup ties. 
Among these, the models of Kent and Park, Vallenas et al., 
and Sheikh and Uzumeri have been used for the 
calculation of the theoretical flexural strength of columns.  
Researchers such as Mander et al., Scott et al., Sheikh and 
Uzumeri and Vallenas et al. have performed several tests 
on real full-scale structures. 

A complex mathematical model was developed by 
Bazant and Bhat. Apparently this model is the sole model 
that considers the stress-strain relation for the monotonic, 
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cyclic and dynamic loading of confined and unconfined 
concretes under any state of multi-axial stresses. 

However this model has been developed by using 
mainly the data based on the biaxial and tri-axial tests with 
the confinement provided by mechanical means. 

The proposed model by Kent and Park to describe the 
behavior of concrete confined within rectangular stirrup 
ties was based on the experimental tests results of Roy and 
Sozen and of other researchers who have taken into 
account the enhancement of ductility strength. 

Scott et al. and Park et al. have also worked on the full-
scale columns of buildings. By considering the 
augmentation of concrete’s strength due to confinement 
and the effect of the strain velocity, they proposed 
modification to the behavior model of Kent and Park. 

Vallenas et al., and Sheikh and Uzumeri have proposed 
the monotonic stress-strain equation for concrete confined 
by rectangular transverse reinforcements that takes into 
account the above-mentioned considerations. Park et al., 
Desayi et al., Ahmad and Shah, Meyer, CEC, Mander, 
Sheikh et al., Fu et al. and Tassios and others have also 
proposed equations for the monotonic stress-strain model 
of concrete confined by spiral or circular transverse 
reinforcements. 

Structure- 

Concrete 
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The effectiveness of transverse reinforcement in 
providing confinement depends upon the spacing and 
arrangement of this steel in the section [1]. The effective 
section area of confined concrete increases as the spacing 
of the spiral or ties decreases. Confinement in a RC 
column can lead to an increase in strength, ultimate strain 
and as well as in ductility. An important feature of the 
behavior is the maximum strain that can be sustained by 
the concrete, as this has a major influence on the ductility. 
The limiting concrete strain has been found to be reached 
when one or more of the confining ties fail in tension.  

In the following, a model for confined and unconfined 
concretes under cyclic compression loading is proposed by 
the author. 

Existing damage indices are based on different 
characteristics such as the number of cycles, stiffness, 
ductility and energy.  

The damage index proposed by Park and Ang [2] 
which is based on the plastic-hinge approach and consists 
of both deformation and energy terms, has been criticized 
by Abbasnia et al. [3] and some other researchers. 

In some of the existing energy-based damage indices 
(proposed by Meyer and Garstka), an additional 
monotonic loading test is needed for the cyclic loading 
cases because in these damage indices, absorbed energy to 
failure of monotonic loading is used as normalizing factor 
for cyclic loading cases. Therefore some adaptation 
measures are also required. The distribution of Meyer’s 
damage index “D” between 0% and 100%, especially for 
repeated cycles, is not valid. This approach has been 
criticized by the author which confirmed by Garstka and 
other researchers. In the global energy based damage index 
proposed by the author [4], a cyclic normalizing factor is 
used and therefore no adaptation factor is needed and the 
value of “D” becomes exactly 100% at failure while 
following a regular distribution. To determine “D”, the 
calculation of displacements for several sections or for the 
critical section is necessary.  

The goal of this paper is to present an analytical 
nonlinear stress-strain model and a microscopic damage 
index for confined and unconfined concretes that can be 
applied to the simulation of concrete finite elements within 
the sections of RC structures together with a simplified 
macroscopic damage index for RC structures under cyclic 
loading. The macroscopic damage index is based on the 
local degradation of materials for RC structures under any 
type of cyclic loading by considering moment-curvature 
data at critical sections (without the calculation of 
displacements) of the structural member. 

2. Experimental Data 

The experimental test results carried out by Garcia 
Gonzalez [5] and Park et al. [6] are mainly used for the 
global validation of the proposed models. The 
experimental test results on the confined and unconfined 
concrete samples performed by the author [7], Lamirault 
[8], Al Sulayfani [9], Tassios [10], Park [6], Buyukozturk 
[11], Meyer [12], Darwin [13], Bazant and Kim [14], 
Sinha et al. [15], Karsan and Jirsa [16] and Mander et al. 

[17] are also used for local validation.  
Over 20 tests performed by Garcia Gonzalez [5] on 

full-scale columns under bi-axial alternating cyclic and 
axial loading were used. The horizontal loads through 
different horizontal directions of angles Ω with the main 
axis of cross-section have been applied on the top of the 
columns. Over 55 cylindrical samples of confined and 
unconfined concretes were also tested [7]. 

3. Finite Element Computer Program 

A computer program entitled “Structural Analysis and 
Damage Evaluation Program” (SADEP) has been 
developed by the author [4] to simulate numerically the 
behavior of RC structures under cyclic loading. 

SADEP has some sub-programs such as BBCS 
(Biaxial Bending Column Simulation) which is used as 
Base Model, CCS (Confined Concrete Simulation), UCS 
(Unconfined Concrete Simulation) and SBS (Steel Bars 
Simulation).  

In BBCS, behavior models for confined and 
unconfined concretes generated by using CCS and UCS 
are considered and the behavior models of structural 
members are specified. After an iterative process the 
simulated and experimental results are compared and the 
concrete stress-strain models are adjusted accordingly.  
The selected models presented here are simple but 
sufficiently accurate to be used in a cyclic simulation. 

In BBCS,  each section of structure is discretized into 
finite elements. For compressive confined and unconfined 
concrete elements, the cyclic stress-strain models proposed 
by the author and for reinforcements the expression 
proposed by Park and Kent [6] based on the Ramberg-
Osgood cyclic model have been used. The concrete tensile 
stress is assumed to be linear up to the concrete tensile 
strength. The CEB code specification [18] was used for the 
maximum compressive strain value for unconfined 
concrete, and the value proposed by Sheikh [19] employed 
for confined concrete.  

The basic equilibrium is justified over a critical 
hypothetical cross-section assuming the Navier law with 
an average curvature. The method used qualifies as a 
“Strain Plane Control Process” that requires the resolution 
of a quasi-static simultaneous equations system using a 
triple iteration process over the strains [4]. For this 
procedure, the strains in the extreme compressive and 
tensile points of the section are considered as the two main 
variables. The program takes into account the confining 
effect of the transverse reinforcement and simulates the 
loss of the concrete cover. It allows the determination of 
the failure, the local internal behavior of critical section 
(i.e. strains, stresses, neutral axis, microscopic damage 
index, etc.) and the global external behavior of the column 
(deflection, average rigidity, equivalent viscous damping 
ratio, macroscopic damage index, etc.). The simulated 
results obtained using SADEP are in the main confirmed 
by the full-scale experimental results obtained by other 
researchers [5, 20, 6]. 

4. Proposed Stress-Strain Model for Confined and 
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Unconfined Concretes 

4.1. Methodology 

In order to eliminate the problem of scale effect, in 
addition to using the results of tests on concrete samples, 
SADEP was used and the simulated and experimental test 
results on the full-scale columns were compared. In this 
way the proposed non-linear stress-strain model for 
confined and unconfined concretes under cyclic loading 
was modified and validated. 

The stress-strain curve of unconfined concrete under 
monotonic loading is used as the envelope curve for the 
cyclic loading case as confirmed by the author [21, 7], 
Sinha et al. [15], Karsan and Jirsa [16] and Al Sulayfani 
[9]. A similar relationship also holds for confined concrete 
[17]. This confirmed relationship between the cyclic and 
monotonic loading curves are used in the proposed model. 

4.2. Examples of evaluation and modification of the 
parameters 

Utilization of an unconfined model similar to that of Al 
Sulayfani [9] for the simulation of a RC element’s 
behavior results in more closely spaced hysteresis loops 
than are obtained by the experimental tests on the columns 
of Garcia Gonzalez [5]. To further investigate the problem, 
the models of Park [6], Buyukozturk [11], Meyer [12], 
Darwin [13], Bazant and Kim [14] and Karsan and Jirsa 
[16] have been studied. Comparative studies on the 
parameters relating to the point of unloading (slope at the 
point of unloading and the coordinates of plastic residual 
stress) have been performed. By performing numerical 
simulation on the columns using SADEP and comparing 

these results with the experimental test of Garcia Gonzalez 
[5], it was observed that, the values of unloading tangent 
modulus ܧ௎଴ and plastic residual strain ߝ௥ (the plastic 
residual strain is defined as the residual axial strain of 
concrete when it is unloaded to zero stress[22] (see Fig. 2)) 
which are used for generating the stress-strain (ߪ െ  (ߝ
curve play a very significant role in the moment-curvature 
response of the section of a RC member in the unloading 
phase. As shown in Fig. 2, the variation of ܧ௎ is less 
important, because its effect is situated in the zone of 
lesser stresses. The plastic residual strain ߝ௥ has a non-
negligible role in the failure phenomenon in the case of 
cyclic loading. If this strain is considered greater than the 
actual case, the failure appears sooner in the response 
curve. Conversely, if a value of ߝ௥ smaller than the actual 
one is adopted, the number of cycles at failure and the 
values of the displacement and the curvature will reduce. 
In Table 1, the variations of the values of ߝ௥ ⁄଴ߝ  as a 
function of ߝ஺ ⁄଴ߝ  obtained by using different researchers 
models are presented (see also Fig. 2).  

Comparison of the simulated results by using SADEP 
and the experimental of Meyer, indicates a close 
agreement between the proposed ߝ௥ ⁄଴ߝ  values and the 
experimental of Meyer values. 

As another example, if the value of EU0 is assumed to 
be smaller than the actual case, the hysteresis loops in the 
response curve (moment-curvature or force-displacement 
curves) are more closed. This kind of verification and 
comparison with the experimental test results is used to 
determine all the parameters and coefficients of the 
proposed model. These calculations and verifications are 
performed by applying SADEP. 

 
Table 1 Values of ߝ௥ ⁄଴ߝ  obtained by using different models 

஺ߝ ⁄଴ߝ  0.3 0.5 0.7 1.0 1.2 1.5 1.7 2.0 

Al Sulayfani’s model 0.019 0042 0.081 0.182 0.289 0.528 0.751 1.199 

Meyer’s model 0.024 0.068 0.132 0.340 0.442 0.615 0.744 0.960 
Karsan’s model 0.052 .101 0.162 0.275 0.365 0.521 0.640 0.840 

Buyukozturk’s model 0.079 0.165 0.277 0.496 0.675 0.995 1.240 1.660 
 

4.3. Proposed stress-strain model for confined concrete 

The following stress-strain model is proposed to 
simulate numerically the behavior of confined and also 
unconfined concrete elements discreted within the sections 
of RC members. 

4.3.1. Stress-strain model for confined concrete under 
monotonic loading  

The proposed analytic equation for the stress-strain 
model of confined concrete under monotonic compression 
loading is described below. Equation (1) presents a simple 
mathematical model that is valid for concretes with the 
strengths within the range of 20 MPa < ௖݂

ᇱ < 50 MPa. Fig. 
1 presents schematically the proposed stress-strain curves 

obtained for confined and unconfined concretes under 
monotonic loading.  These curves are also used as the 
envelope curves for the cyclic loading cases. 

 

ߪ ൌ ௖݂௖
ᇱ

௅ܣ ሺ
ߝ

௖଴ߝ
ሻଶ ൅ ௅ܤ ቀ

ߝ
௖଴ߝ

ቁ ൅ ௅ܥ ൅ ௅ ሺܦ
ߝ

௖଴ߝ
ሻିଵ

 (1) 

 
The relationship between the coordinates of the peaks 

of confined and unconfined concretes [10, 21] are given 
as:  

௖݂௖
ᇱ ൌ ௖݂

ᇱ ሺ1.000 ൅ 2.5ܽ. ߱௪ሻ  for 
ߪ ௖݂

ᇱ⁄ ൏ 0.05 or ܽ. ߱௪ ൏ 0.1 
(2) 

௖݂௖
ᇱ ൌ ௖݂

ᇱ ሺ1.125 ൅ 1.25ܽ. ߱௪ሻ  for 
ߪ ௖݂

ᇱ ൒⁄ 0.05 or ܽ. ߱௪ ൒ 0.1  
(3) 
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௖଴ߝ ൌ ଴ߝ   ቆ ௖݂௖
ᇱ

௖݂
ᇱ ቇ

ଶ

 (4) 

With:    ߱௪ ൌ ݇ ቀ ஺೟

௕೘ೌೣ .  ௌ೟
ቁ ሺ

௙೤೟

௙೎
ᇲ ሻ (5) 

ܽ ൌ  ܽ௡ . ܽ௦ (6) 

ܽ௡ ൌ 1 െ  ଼

ଷఎ
,  (ܽ௡ ൌ 1 for circular sections) (7) 

ܽ௦ ൌ  ሺ1 െ  
ௌ೟

ଶ ௕బ
ሻଶ for rectangular and circular sections (8) 

ܽ௦ ൌ  ሺ1 െ ௌ೟

ଶ ௕బ
ሻ for circular sections with spiral 

transverse reinforcements 
(9) 

 
 
 
Where, ߪ represents the stress, ߝ represents the strain, 

௖݂
ᇱ and ௖݂௖

ᇱ  represent compressive strengths of unconfined 

and confined concretes at 28 days, respectively, ߝ଴ and ߝ௖଴ 
represent the strains related to ௖݂

ᇱ and ௖݂௖
ᇱ ,  respectively, ܣ௧ 

represents the cross sectional area of a transverse 
reinforcement, ௬݂௧ represents the yield stress of transverse 
reinforcement, ܾ௠௔௫ represents the larger dimension of the 
section, ܵ௧ represents the longitudinal spacing between 
transverse reinforcements, ܽ represents the confinement 
efficiency factor defined as the ratio of the confined area 
over the total area, ܽ௡ represents the transverse 
reinforcements form factor, ܽ௦ represents the transverse 
reinforcements spacing factor, and ܾ଴ represents the 
distance between external longitudinal reinforcements in 
the column section. The factors ݇ and η used in equations 
(5) and (7) for some forms of transverse reinforcements 
[21, 10] are given in Table 2. 

 
Confined Concrete
Uncofined Concrete

0  85.0c 0c  85.0 45.0c 45.0

L

P

Y

f’cc

f’c

0.85f’c
0.85f’cc

0.45f’cc
0.45f’c

Strain (ε) 

Stress ( )

 
Fig. 1 Proposed stress-strain curves for confined and unconfined concretes under monotonic loading (Envelope curve for cyclic loading 

cases) 
 

Table 2 Values of k and η for some forms of transverse reinforcements [21, 10] 

Form 
of 

trans. 
reinf. 

 
 
 

        

k* 4 6 6,83 7,22 8 9,33 12,83 10 10,8 

η 4 8 8 12 12 12 16 16 16 

* K = 4 in case of circular transverse reinforcement. 
 
 
By inserting the relevant values of stress and strain in 

equation (1) at points L, P and Y and also recognizing that 
the slope of the curve is equal to zero at the peak of the 
curve (see Fig. 1), the four unknown coefficients AL, BL, 
CL and DL are determined. These four conditions 
(coordinates of the points L, P and Y and also the slope at 
point P) are as follows: 

 Point L(ߝ௖଴.ସହ, 0.45 ௖݂௖
ᇱ ) on the confined concrete 

stress-strain curve: 
 

with:  ߝ௖଴.ସହ ൌ ሺ0.45 ௖݂௖
ᇱ ሻ/ܧ௖଴.ସହ (10) 

and secant modulus: ܧ௖଴.ସହ ൌ 4861 ሺ ௖݂௖
ᇱ ሻ଴.ସଽ (11) 

 
 Point P at maximum stress of confined concrete 

stress-strain curve at coordinates (ߝ௖଴, ௖݂௖
ᇱ ): 

 
௖଴ߝ ൌ 0.00085 ሺ ௖݂௖

ᇱ ሻ଴.ଶସ଺               ( ௖݂௖
ᇱ  in MPa) (12) 

σ௖଴ ൌ ௖݂௖
ᇱ (13) 

 
The supplementary condition of zero slope (tangent) at 

point P gives: 
 

݀σ
݀ε

ൌ 0 (14) 

 
 Point Y(εc0.85, 0.85 ௖݂௖

ᇱ ) on the confined concrete 
stress-strain curve: 

 
ε௖଴.଼ହ ൌ ε଴.଼ହ ൅ 0.1߱௪ (15) 
σ௖଴.଼ହ ൌ 0.85 ௖݂௖

ᇱ (16) 
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where:  ε଴.଼ହ ൌ ሺ1.9 െ  0.008 ௖݂௖
ᇱ ሻε଴      ( ௖݂௖

ᇱ  in MPa) (17) 

4.3.2. Stress-strain model for confined concrete under 
cyclic loading 

4.3.2.1. Unloading curve 

As shown in Figs. 2 to 4, unloading may occur either 
from the envelope curve or from a phase of reloading. In 
both cases, the equation (18) gives the stress-strain curve 
for unloading. 

 

σ ൌ ሾܣ௎ ൬
ε

ε௖଴
൰

ଷ
൅ ܤ௎ ൬

ε
ε௖଴

൰
ଶ

൅ ௎ܥ ൬
ε

ε௖଴
൰ 

൅ ܦ௎ሿ ௖݂௖
ᇱ  

(18) 

 
The four unknown factors AU, BU, CU and DU can be 

found by applying the coordinates and slopes of two 
extreme points on the unloading curve (i.e. the starting and 
finishing points on the unloading curve). 
a) Unloading from the envelope curve 

In the case of unloading from the envelope curve (see 
Fig. 2), to find the unknown factors AU, BU, CU and DU, 
the coordinates and slopes at points A(εA, σA) and B(εp, 0) 
are used.  

The tangent modulus at point A is given as follows:  
 

௎଴ܧ ൌ 10σ஺/ሾ3ሺε஺ െ ε௥ሻሿ (19) 
 
The plastic residual strain ߝ௥ at point B, depending on 

the unloading starting point coordinates (point A) can be 
found from the equation (20) or (21). 

 

ε௥ ൌ ሾ0.27 ቀ கಲ

க೎బ
ቁ

ଶ
ሿε௖଴  for        

கಲ

க೎బ
൑ 1 (20) 

ε௥ ൌ ሾ0.14 ቀ கಲ

க೎బ
ቁ

ଶ
൅ 0.2 ఌಲ

ఌ೎బ
ሿε௖଴ for        

கಲ

க೎బ
൒ 1 (21) 

 

 
Fig. 2 Unloading from the envelope curve 

 
The tangent modulus at point B can be found from the 

equation (22) or (23). 
 

௎ܧ ൌ ሾ ଴.଻ଶ

଴.ଽହା଺.ହ
ഄೝ

ഄ೎బ

ሿܧ௖଴.ସହ  for         
கೝ

க೎బ
൏ 1 (22) 

௎ܧ ൌ ሾ 
ഄೝ

ഄ೎బ
ିସଽ.ଽଽ

ସ଼.଼
 ሿܧ௖଴.ସହ for           1.6 ൑

கೝ

க೎బ
൏ 5 (23) 

 
b) Unloading from a phase of reloading 

In the case of unloading from a phase of reloading, 
depending on the coordinates of unloading point (C or D) 
comparing with the coordinates of point A(ߝ஺, ߪ஺), 
different moduli are used as given below and as shown in 
Figs. 3 and 4. 

b1) Unloading from a point C where ߝ஼ ൏ ஺ߝ  

 Point C(ߝ஼  :(஼ߪ ,
The coordinates of point A have been determined in 

the previous step. 
The value of unloading tangent modulus (ܧ௎஼) at point C 

is obtained by linear interpolation between the modulus ܧ௎଴ 

at point A and ܧ௎  at point B which is given in equation (24). 
 

௎஼ܧ ൌ ௎଴ܧ െ
ሺܧ௎଴ െ ௎ሻܧ

ሺߝ஺ െ ௥ሻߝ
 (24) 

 

 
Fig. 3 Unloading from a point C on reloading curve when 

஼ߝ ൏  ஺ߝ

 
Fig. 4 Unloading from a point D on the reloading curve when 

஽ߝ ൐  ஺ߝ
 
 Point B(ߝ௥, 0): 

The coordinates of point B have been determined in the 
previous step by applying the equation (20) or (21). The 
value of tangent modulus EU at point B has also been 
calculated by using the equation (22) or (23). 

b2) Unloading from a point D where  ߝ஽ ൐ ஺ߝ  

For the trajectory shown in Fig. 4, the two points D and 
E that the curve DE passes through them are determined as 
follows: 

 Point D( ߝ஽,  :(஽ߪ
The coordinates of point D have been determined in 

the previous step. 
The value of the unloading tangent modulus (ܧ௎஽) at 

point D is obtained by linear interpolation between the 
modulus ܧ௎଴ at point F and ܧ௎ at point E. The point F is 

r

),(  AAA

EU0
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



),( 0 rB

 r

),(  AAA

EUC
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)0,( rB



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D




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defined as the intersection of the line of slope 1.5ܧ௖଴.ସହ 
passing from point D with the envelope curve. By 
applying the coordinates of point F instead of the 
coordinates of point A, equation (19) allows the 
determination of the unloading modulus at point F. ܧ௎஽ 
can then be found by using equation (25): 

 

௎஽ܧ ൌ ௎଴ܧ  െ
ሺܧ௎଴ െ ௎ሻܧ
ሺߝி െ ௥ሻߝ

 (25) 

 
 Point E( ߝ௥, 0): 

The coordinates of point E are determined by applying 
 .஺ in equation (20) or (21)ߝ ி instead ofߝ

The value of tangent modulus ܧ௎ at point E is 
calculated by applying ߝ௥ of point E in the equation (22) or 
(23). 

4.3.2.2. Reloading curve 

Equation (26) is used for the reloading curve: 
 

σ ൌ ሾܣோ ൬
ε

ε௖଴
൰

ଷ
൅ ோܤ  ൬

ε
ε௖଴

൰
ଶ

൅ ோܥ ൬
ε

ε௖଴
൰ 

൅ ܦோ 
(26) 

 
The four unknown factors AR, BR, CR and DR are found 

by applying the coordinates and slopes of the two extreme 
points of the reloading curve (i.e. the starting point of 
reloading phase and the extreme point on the envelope 
curve). 

As shown in Figs. 5 and 6, reloading from zero stress 
and reloading from an unloading trajectory are considered 
in two different cases as follows: 

a) Reloading from a zero stress status (plastic residual 
strain) 

For the trajectory BG shown in Fig. 5, the two points B 
and G that the curve BG passes through them are 
determined as follows: 

 Point B(( ߝ௥, 0): 
The coordinates of point B have been determined in the 

previous steps. 
The value of reloading tangent modulus ER at point B 

can be obtained from equation (27): 
 

ோܧ ൌ ሾ
1

0.95 ൅ 2.78 ௥ߝ
௖଴ߝ

ሿܧ௖଴.ସହ (27) 

 
 Point G( ீߝ,  :(ீߪ

 
ீߝ ൌ  ஺ (28)ߝ1.22

 

 
Fig. 5 Reloading from a point of zero stress 

 

 
Fig. 6 Reloading from a point on the unloading trajectory 
 
The modulus ER0 is the tangent modulus on the 

envelope curve at point G. 
b) Reloading from an unloading trajectory 

For the trajectory HI shown in Fig. 6, the coordinates 
and slopes of the two points H and I at the starting and 
finishing points of the curve HI are determined as follows: 

 Point H( ߝு,  :(ுߪ
The coordinates of point H have been determined in 

the previous step. 
The tangent modulus ERH at point H is considered to be 

equal to ER and can be calculated by using equation (27). 
 Point I( ߝூ,  :(ூߪ

The strain at point I is calculated by using equation 
(29). 

 

ூߝ ൌ ሾሺߝܭ஺ െ ௥ሻߝ ൅ ሺ1 െ ுሿߝሻܭ
஺ߝ

஺ߝ െ ௥ߝ
 (29) 

 
where: ܭ ൌ 1.22 
The strain at point I, found from equation (29), gives 

ூߝ ൌ ுߝ ஺ whenߝ ൌ ஺ߝ  and gives ߝூ ൌ ீߝ ൌ  ஺ (seeߝܭ
equation (28)) when ߝு ൌ  ௥ (i.e. the point H is positionedߝ 
on the point B). 

The stress ߪூ  and modulus EI at point I can be found by 
using its strain and the envelope curve. 

4.4. Proposed stress-strain model for unconfined concrete 

By replacing suffixes cc, c0, c0.45, c0.85 with c, 0, 
0.45, 0.85, respectively in equations (1), (10) to (14) and 
(16) to (29) the stress-strain model for unconfined concrete 
is found.  
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4.5. Application of the proposed model 

Two examples of the application of the proposed stress-
strain model for confined and unconfined concretes under 
monotonic and cyclic loading are shown in Figs. 7 and 8. 

 

 
Fig. 7 Effect of the spacing of transverse reinforcements, ௖݂

ᇱ = 42 
MPa 

 
Fig. 8 An example of the application of the proposed stress-strain 

model, ௖݂
ᇱ = 42 MPa 

Fig. 7 shows an example for the application of the 
proposed model for unconfined concrete and confined 
concrete with transverse reinforcements (having 6 cm 
spacing and diameters of 8 mm and 6 mm).  

It can be seen from Fig. 7 that the presence of the 
transverse reinforcements significantly increases the 
strength of the RC element and this influence is very 
significant after achieving the maximum strength (after 
peak point). 

Fig. 8 shows another example of the application of the 
proposed stress-strain model to confined concrete 
(concrete of strength  ௖݂

ᇱ = 42 MPa confined within 
rectangular stirrup ties of diameter 8 mm and a 
longitudinal spacing of 6 cm) under monotonic and cyclic 
loading. 

4.6. Validation of the proposed stress-strain model 

In this section, some examples of comparison of 
simulated results using the proposed stress-strain model 
and experimental test results of full-scale RC members are 
presented.  

The proposed stress-strain simulation for confined 

concrete and Mander’s simulation and experimental test 
results [23] are compared in Fig. 9. As this figure shows, 
the strain at peak about 6‰ is overestimated by Mander, 
while this strain and the rate of reduction of stress after the 
peak in the proposed model fits better with the results of 
other researchers (e.g.: Belmouden and Lestuzzi [24] 
reported strain at peak of about 0.00267 for confined 
concrete of strength ௖݂

ᇱ = 48 MPa). 
 

 
Fig. 9 Comparison of the proposed model with experimental tests 

and simulation of Mander [23] 
 
Comparison of numerically simulated results obtained 

for RC members using the proposed stress-strain model 
and experimental tests on full-scale members are reflected 
in Fig.10 to Fig. 14. 

In Figures 10 and 11 the simulated results using the 
proposed model and experimental tests of Garcia Gonzalez 
[5] on columns under monotonic lateral oriented loads of 
angles Ω = 0˚ and Ω = 45˚ with axial load are compared.  

Fig. 12 shows the comparison between the simulated 
results using the proposed model and the experimental and 
simulated results of Park et al. [6] on RC members under 
alternating mono-axial bending moment.  

In Figs. 13 and 14, the average rigidity and equivalent 
viscous damping ratio when applying the proposed model 
and experimental tests [5] for cyclic loading are compared. 

Comparison of the simulated and experimental test 
results indicates a close agreement between simulations 
using the proposed model and the experimental tests on 
full-scale RC members. 

 

 
Fig. 10 Comparison of simulated results using the proposed 
model and experimental tests of Garcia Gonzalez [5], Ω = 0˚ 
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Fig. 11 Comparison of simulated results using the proposed 

model and experimental tests of Garcia Gonzalez [5], Ω = 45˚ 
 

 
Fig. 12 Comparison of simulated results using the proposed 

model and experimental tests and simulation of Park [6] 
 

 
Fig. 13 Comparison of the average rigidity when using the 

proposed model and experimental tests [5], cyclic loading, Ω = 
30˚ 

 

 
Fig. 14 Comparison of equivalent viscous damping ratio when 

using the proposed model and experimental tests [5], cyclic 
loading, Ω = 30˚ 

5. Damage Index 

Both a damage index applicable to confined and 
unconfined concretes elements (microscopic level) and a 
damage index (derived from energy-based damage index 
[4]) for sections of RC structural members (macroscopic 
level) subjected to cyclic and monotonic loading are 
proposed in this paper.   

5.1. "Primary half-cycle" and "following half-cycle" 
concepts 

Following Otes [25] a "primary half-cycle (PHC)" is 
considered when any half-cycle reaches a new maximum 
displacement: it is followed by a certain number of 
"following half-cycles (FHC)" with smaller displacements.  
Whenever a certain maximum displacement, 
corresponding to the primary half-cycle (PHC)i is 
exceeded, a new primary half-cycle (PHC)i+1 is 
established.  Every PHC corresponds to a certain damage 
degree.  

 
 

5.2. Proposition of a Microscopic damage index for 
Concrete 

A microscopic damage index (D) for confined and 
unconfined concretes is proposed as represented by the 
equation (30). 

 

ࡰ ൌ
∑ ׬ .࢏࢖࣌ ࢏࢖ࢿࢊ

࢏࢖ࢿ
ష૚ሻ࢏ሺ࢖ࢿ

࢏ୀ࢏
ୀ૚࢏

∑ ׬ .࢑࢖࣌ ࢑࢖ࢿࢊ
࢑࢖ࢿ

ሺ࢑ష૚ሻ࢖ࢿ

࢑ୀ࢔
࢑ୀ૚

 (30) 

 
 
Where  i and k are the cycle numbers; n is the 

cycle number at concrete failure; ࣌࢏࢖ is the applied 
compressive stress during (PHC)i; ࢏࢖ࢿࢊ is the differential 

strain during (PHC)i;  and ׬ .࢏࢖࣌ ࢏࢖ࢿࢊ
࢏࢖ࢿ

ష૚ሻ࢏ሺ࢖ࢿ
 is the area 

under the curve of stress-strain during (PHC)i which is 
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abbreviated as (PHCSSA)i. 
To apply this damage index, the stress-strain data of 

the finite element is needed. 
Fig. 15 compares the proposed microscopic damage 

index, calculated for concrete confined within rectangular 
transverse reinforcements with a spacing of 6 cm and a 
diameter of 9 mm with unconfined concrete of strength of 
ࢉࢌ

ᇱ  = 35 MPa under cyclic loading. 
 

 
Fig. 15 Microscopic damage index, calculated for confined and 

unconfined concretes under cyclic loading 

5.3. Proposition of a simplified macroscopic damage index 
for RC structural members 

Based on the evidence that the structural member is 
highly affected in the critical zone (section), the main 
bending effect is due to the curvature registered at critical 
sections. Actually after the peak value on the response 
curve of critical section, very significant local effects 
occur at the critical section where a pseudo plastic hinge 
appears. Once the peak has passed, curvature enhancement 
is concentrated at the critical zone (section), while in the 
other regions, the curvatures decrease rapidly to near zero 
and cracks openings are closed. To determine force-
displacement relationships for different sections of a 
structural member to apply the global energy-based 
damage index (D) requires a very time consuming 
calculation of the structural member’s displacement. 
Further, the structural member response is highly affected 
in the critical zone (section), a comparable simplified 
moment-curvature based macroscopic damage index (D), 
derived from the global energy-based damage index 
proposed by the author [4] as represented by the equations 
(31), (32) and (33) is proposed in this paper. 

 
 

ࡰ ൌ ,ାࡰሾ ࢞ࢇࡹ  ሿ (31)ିࡰ

ାࡰ ൌ  
∑ ׬ ࢏࢖ࡹ

శ ࢏࢖࣐ࢊ.
శ࣐࢏࢖

ష૚ሻ࢏ሺ࢖࣐
࢏స࢏
స૚࢏

∑ ׬ ࢑࢖ࡹ
శ ࢑࢖࣐ࢊ.

శ࣐࢑࢖
ሺ࢑ష૚ሻ࢖࣐

࢑స࢔
࢑స૚

  (for 

PHC positive curvatures) 

(32) 
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ష࣐࢑࢖
ሺ࢑ష૚ሻ࢖࣐

࢑స࢔
࢑స૚

     (for 

PHC negative curvatures) 

(33) 

 

Where i and k are the cycle numbers; n is the cycle 
number at structural member’s failure; ࢏࢖ࡹ

ା  and ࢏࢖ࡹ
ି  are 

the applied bending moments during (PHC)i
+ and (PHC)i

- 

in positive and negative directions, respectively; ࢏࢖࣐ࢊ
ା  and 

࢏࢖࣐ࢊ
ି  are the differential curvature during (PHC)i

+ and 
(PHC)i

- for positive and negative PHC curvatures, 
respectively; ׬ ࢏࢖ࡹ

ା . ࢏࢖࣐ࢊ
ା࣐࢏࢖

ష૚ሻ࢏ሺ࢖࣐
 and ׬ ࢏࢖ࡹ

ି . ࢏࢖࣐ࢊ
࢏࢖࣐ି

ష૚ሻ࢏ሺ࢖࣐
 are 

the area under the curve of moment-curvature during 
(PHC)i

+ and (PHC)i
-  in positive and negative directions 

which are abbreviated as  (PHCMCA)i
+ and (PHCMCA)i

-, 
respectively. 

The evaluation of the (PHCMCA)i
+, (PHCMCA)i

- and 
“D” is illustrated by the example shown schematically in 
Fig. 16 for cyclic loading. Fig. 16 shows a typical 
moment-curvature curve for critical section of a RC 
column under cyclic loading. The (PHCMCA)1

+ of the 
first PHC corresponds to the area under the curve of 
OAA’. 

 

 
Fig. 16 Schematic illustration of damage index “D” calculation 

procedure for cyclic loading 
 
During unloading towards point B, the “D” retains its 

value. Following the loading cycle to the point C, is a 
“following half-cycle” in positive direction. “D-” is still 
zero. The change in sign of (PHCMCA)1

+ occurs at the 
points of symmetry about the origin of the coordinate 
system. For the first PHC in the negative curvature range, 
(PHCMCA)1

- is equal to the area under the curve OCDD’. 
The recovered moment-curvature area between points D 
and E is not considered, and “D” retains its value. Loading 
between points E and F is the first FHC in the negative 
direction. Further loading in the positive direction up to 
point A” (maximum positive curvature to date) is equal to 
a new FHC. After point A”, a new PHC for positive 
curvatures is formed. (PHCMCA)2

+ is equal to the area 
under the curve A”GG’A’. Subsequent cycles are analyzed 
with the same procedure and the damage index “D” is 
calculated. 

In Fig. 17, the macroscopic “D” calculated for two 
columns under cyclic and monotonic loading versus top 
horizontal displacement are shown.  
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Fig. 17 Macroscopic Damage index, calculated for tested 

columns under cyclic and monotonic loading 
 

 
Fig. 18 Meyer’s Damage index, calculated for tested columns 

under cyclic and monotonic loading 
 
In Figs. 17 and 18, the proposed and Meyer’s indices 

calculated for columns C0C3 and C0M under cyclic and 
monotonic loading, versus top horizontal displacement are 
presented. As Fig. 17 indicates, this column under cyclic 
loading is damaged only during positive displacements; 
therefore the increasing of “D” is mainly due to “D+”. 
Some other tested columns are damaged during both 
positive and negative displacements, and the increasing of 
“D” for these is due to both “D+” and “D- ”. 

Comparing the values given in Figs. 17 and 18 with 
damage phases shows that the damage index proposed by 
Meyer is oversensitive to the number of cycles and is 
therefore, not applicable in case of loading comprising 
repeated cycles, while the proposed damage index 
provides a regular distribution adapted to different phases 
of damage up to failure for any type of loading. As an 
example, applying the column test results under cyclic 
loading with 20 repeated cycles per amplitude shows that 
Meyer's “D” reaches 71% in the phase of first tension 
crack appearance and 99.9% in the phase of first 
compression crack appearance, while in these phases the 
proposed “D” reaches 4.5% and 49.5%, respectively. 

In monotonic loading cases, the proposed and Meyer’s 
indices provide exactly the same results. 

To calculate macroscopic “D”, the moment-curvature 
data for the critical section is required. This data can be 
found from the numerical simulation of structures.  

The comparison between values of the proposed 
damage index calculated based on experimental test data 
and numerical simulation results using SADEP for cyclic 
and monotonic loading cases shows that for the calculation 
of “D”, performing expensive experimental tests is not 
necessary and using a nonlinear structural analytical 
simulation such as SADEP is sufficient. 

The proposed damage indices are applicable for any 
type of cyclic and monotonic loading. 

5.4. Damage phases 

The microscopic damage index reaches between 50% 
and 60% at the peak point of the unconfined concrete’s 
stress-strain curve and is between 20% and 25% at the 
peak point of the confined concrete stress-strain curve. It 
reaches 100% at failure. 

For the tested RC columns under cyclic lateral oriented 
loading and axial loading, the values of the proposed 
macroscopic damage index, reached about 5% in the phase 
of the first tensile cracks appearance, between 45% to 50% 
when the first compression cracks occurred, and 100% at 
failure. 

6. Conclusions 

The proposed stress-strain models for confined and 
unconfined concretes under the compression monotonic 
and cyclic loading is simple and applicable to simulate 
numerically the RC structure’s behavior under monotonic 
and cyclic loading. 

The proposed model is validated mainly by comparison 
with the results of experimental tests carried out on both 
concrete cylindrical samples and on RC full-scale columns 
subjected to cyclic mono-axial and biaxial bending moments 
with applied axial load performed by different researchers. 

Since the proposed model has a strong mathematical 
structure, it can readily be adapted and achieve a higher 
degree of precision by modifying the relevant coefficients 
following the completion of more accurate and precise 
tests. The proposed model can be used in conjunction with 
finite element analysis for the simulation of a wide range 
of RC elements under any loading conditions. 

The damage indices proposed in this paper are 
applicable to RC elements and structures subjected to 
cyclic and monotonic loading. They have been validated 
both by comparing the experimental data obtained in 
laboratory tests and nonlinear numerical simulation 
performed by SADEP. They are practical means for 
determining whether to repair or demolish structures after 
an earthquake. It can also be employed in the design of 
new structures as a design parameter to define the 
acceptable limit of damage as set by building codes. 
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